Lookahead Optimizer: k steps forward, 1 step back

Michael R. Zhang, James Lucas, Geoffrey Hinton, Jimmy Ba

Related Work / Motivation

Polyak Averaging

- Proposed by Boris Polyak as a method for acceleration in convex optimization in 1992. Ruppert independently explored this in 1988.
- Taking arithmetic average of weights gives faster convergence in convex optimization
- Weight averaging in neural networks has seen more interest recently

Stochastic Weight Averaging (2018)

- Create an ensemble by averaging the weights of a neural network at different points in training
- Beats existing methods for ensembling in model space

Pavel Izmailov, Dmitrii Podoprikhin, Timur Garipov, Dmitry Vetrov, Andrew Gordon Wilson

Regularized Nonlinear Acceleration (RNA)

- A related, more complicated algorithm that tries to find a point where the gradient is zero.
- It solves a linear system based on the most recent k iterates
- Achieves faster convergence and occasionally better generalization
- Factor of k times more memory and more compute
 - \circ O(K²d + K³)

Method

Lookahead Optimizer

Algorithm 1 Lookahead Optimizer:

```
Require: Initial parameters \phi_0, objective function L
Require: Synchronization period k, slow weights step
   size \alpha, optimizer A
   for t = 1, 2, ... do
      Synchronize parameters \theta_{t,0} \leftarrow \phi_{t-1}
      for i = 1, 2, ..., k do
         sample minibatch of data d \sim \mathcal{D}
         \theta_{t,i} \leftarrow \theta_{t,i-1} + A(L, \theta_{t,i-1}, d)
      end for
      Perform outer update \phi_t \leftarrow \phi_{t-1} + \alpha(\theta_{t,k} - \phi_{t-1})
   end for
   return parameters \phi
```


CIFAR-100 accuracy surface with Lookahead interpolation SGD continued

- Project parameters of neural network into 2-D for visualization
- Lighter colors
 represent regions of
 higher accuracy

Noisy Quadratic Analysis

 Simple proxy for neural network optimization (see work from James Martens, Roger Grosse, Tony Wu, Guodong Zhang et al.)

$$L(\theta) = \frac{1}{2}\theta^T \mathbf{A}\theta = \frac{1}{2} \sum_{i=1}^d a_i \theta_i^2 \triangleq \sum_{i=1}^d l(\theta_i).$$

We assume that the gradient we obtain is noisy: for each dimension, instead of receive the true gradient $a_i\theta_i$, we get a noisy version $a_i\theta_i + c_i$, where $c_i \sim \mathcal{N}(0, \sigma_i^2)$.

Noisy Quadratic Analysis

Proposition 2 (Lookahead variance reduction). Let $0 < \gamma < 2/L$ be the learning rate of SGD and Lookahead where $L = \max_i a_i$. In the noisy quadratic model, the iterates of SGD and Lookahead with SGD as its inner optimizer converge to 0 in expectation and the variances converge to the following fixed points:

$$V_{SGD}^* = \frac{\gamma^2 \mathbf{A}^2 \Sigma^2}{\mathbf{I} - (\mathbf{I} - \gamma \mathbf{A})^2}$$
(6)

$$V_{LA}^* = \frac{\alpha^2 (\mathbf{I} - (\mathbf{I} - \gamma \mathbf{A})^{2k})}{\alpha^2 (\mathbf{I} - (\mathbf{I} - \gamma \mathbf{A})^{2k}) + 2\alpha (1 - \alpha) (\mathbf{I} - (\mathbf{I} - \gamma \mathbf{A})^k)} V_{SGD}^*$$
(7)

Results

CIFAR-10

 Find best hyperparameters for inner optimizer, then perform small grid search on outer loop

Hyperparameter Robustness

Hyperparameter Robustness

Hyperparameter Robustness (LA hyperparams)

Fast / Slow Weight Intuition

 Inner updates can degrade performance on both training and test set, while outer update restores performance

ImageNet

- Standard benchmark for image classification: over 1.28 million training images and 50,000 validation images
- ResNet-50 has 25 million parameters, works for ResNet-152 as well

Test time performance

OPTIMIZER	CIFAR-10	CIFAR-100	OPTIMIZER	LA
SGD POLYAK ADAM LOOKAHEAD	$95.23 \pm .19$ $95.26 \pm .04$ $94.84 \pm .16$ $95.27 \pm .06$	$78.24 \pm .18$ $77.99 \pm .42$ $76.88 \pm .39$ $78.34 \pm .05$	EPOCH 50 - TOP 1 EPOCH 50 - TOP 5 EPOCH 60 - TOP 1 EPOCH 60 - TOP 5	92.22 75.49

Table 1: CIFAR Final Validation Accuracy.

Table 2: Top-1 and Top-5 single crop validation accuracies on ImageNet.

Neural Machine Translation

- WMT14 English-to-German task with Transformer Model
- Lookahead is robust: achieve faster training convergence without using tuned, ramp-up learning rate schedules

Penn Tree Bank

 Benchmark to model prediction of next word given previous words

OPTIMIZER	TRAIN	VAL.	TEST
SGD	43.62	66.0	63.90
LA(SGD)	35.02	65.10	63.04
ADAM	33.54	61.64	59.33
LA(ADAM)	31.92	60.28	57.72
ASGD	-	61.18	58.79

Summary

- Faster convergence with little hyperparameter tuning on a variety of datasets and models, big and small
- Fast weights can degrade test and training accuracy, but slow weights restore performance
- Extensions: learning rate scheduling, family of methods that maintain memory information

How to Use

Simple interface, in TensorFlow and PyTorch:

```
optimizer = # {any optimizer} e.g. tf.train.AdamOptimizer
if args.lookahead:
    optimizer = Lookahead(optimizer, la_steps=args.la_steps,
la_alpha=args.la_alpha)
```

Code: https://github.com/michaelrzhang/lookahead

Contact: michael@cs.toronto.edu

Thank you!

Interaction with SWA

