Lookahead Optimizer:
k steps forward, 1 step back

Michael R. Zhang, James Lucas, Geoffrey Hinton, Jimmy Ba

Vﬁ UNIVERSITY OF 7 VECTOR
© TORONTO INSTITUTE



Related Work / Motivation



Polyak Averaging

e Proposed by Boris Polyak as a method for acceleration in
convex optimization in 1992. Ruppert independently
explored this in 1988.

e Taking arithmetic average of weights gives faster
convergence in convex optimization

e Weight averaging in neural networks has seen more
interest recently



Stochastic Weight Averaging (2018)

e Create an ensemble by averaging the weights of a neural
network at different points in training
e Beats existing methods for ensembling in model space
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Regularized Nonlinear Acceleration (RNA)

e Arelated, more complicated algorithm that tries to find a
point where the gradient is zero.

e It solves a linear system based on the most recent k
iterates

e Achieves faster convergence and occasionally better
generalization

e Factor of k times more memory and more compute
o O(K%d + K3)

Damien Scieur, Edouard Oyallon, Alexandre d’Aspremont, Francis Bach



Method



Lookahead Optimizer

Algorithm 1 Lookahead Optimizer:

Require: Initial parameters ¢, objective function L
Require: Synchronization period k, slow weights step
size «v, optimizer A
fort=1.2,... do
Synchronize parameters 6; o < ¢¢—1
for:=1.2.....kdo
sample minibatch of data d ~ D
Ori « O;i1 +A(L, 0 1,d)
end for
Perform outer update ¢y < ¢¢—1 + (6 . — Pr—1)
end for
return parameters ¢
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CIFAR-100 accuracy surface with Lookaslggaq in}erpolation

= | e Project parameters
r | of neural network
into 2-D for
visualization
e Lighter colors
represent regions of
higher accuracy




Noisy Quadratic Analysis

e Simple proxy for neural network optimization (see work
from James Martens, Roger Grosse, Tony Wu, Guodong
Zhang et al.)
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We assume that the gradient we obtain is noisy: for each dimension, instead of receive the true
gradient a;0;, we get a noisy version a;60; + ¢;, where ¢; ~ N (0, Uf).



Noisy Quadratic Analysis

Proposition 2 (Lookahead variance reduction). Let 0 < v < 2/L be the learning rate of SGD and
Lookahead where L. = max; a;. In the noisy quadratic model, the iterates of SGD and Lookahead
with SGD as its inner optimizer converge to 0 in expectation and the variances converge to the
following fixed points:
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Results



CIFAR-10

e Find best hyperparameters for inner optimizer, then

perform small grid search on outer loop
CIFAR-10 Train Loss
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Hyperparameter Robustness

Evaluation of Inner Optimizer Learning Rates (CIFAR-10)
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Hyperparameter Robustness

Lo Evaluation of Inner Optimizer Momentum (CIFAR-10)
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Hyperparameter Robustness (LA hyperparams)

Train Loss on CIFAR-100
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Test accuracy

Fast / Slow Weight Intuition

e Inner updates can degrade performance on both training
and test set, while outer update restores performance

Per Update Test Accuracy on Epoch 65
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ImageNet

e Standard benchmark for image classification: over 1.28
million training images and 50,000 validation images

e ResNet-50 has 25 million parameters, works for
ResNet-152 as well

Training loss during training for ResNet-50 (ImageNet)
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Test time performance

OPTIMIZER CIFAR-10 CIFAR-100 OPTIMIZER LA SGD
SGD 95.23+ .19 78.24 + .18 ErocH 50 -Torl 75.13 74.43
EPOCH 50 -Tor5 92.22 92.15

i?)lfh‘f[‘ K 3232 i (1)% ;ggg i 33 EPOCH 60 - Tor1 75.49 75.15
' : ' ' EPOCH 60 - TOPS 92.53 92.56

LOOKAHEAD 95.27+ .06 78.34 4+ .05

: — Table 2: Top-1 and Top-5 single crop validation
Table 1: CIFAR Final Validation Accuracy.  accuracies on ImageNet.



Neural Machine Translation

e WMT14 English-to-German task with Transformer Model
e Lookahead is robust: achieve faster training convergence
without using tuned, ramp-up learning rate schedules

—— Adam + warmup

3.25 A —— AdaFactor

Lookahead + Adam + warmup
3.00 A —— Lookahead + Adam

0 10000 20000 30000 40000 50000
Inner Loop (Fast Weights) Steps



Penn Tree Bank

Perplexity

e Benchmark to model prediction of next word given

previous words

Training Perplexity during training of LSTM
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OPTIMIZER TRAIN  VAL. TEST
SGD 43.62 66.0 63.90
LA(SGD) 35.02 65.10 63.04
ADAM 33.54 61.64 59.33
LA(ApAM) 31.92 60.28 57.72
ASGD - 61.18 58.79




Summary

e Faster convergence with little hyperparameter tuning on a
variety of datasets and models, big and small

e Fast weights can degrade test and training accuracy, but
slow weights restore performance

e Extensions: learning rate scheduling, family of methods
that maintain memory information



How to Use
Simple interface, in TensorFlow and PyTorch:

optimizer = # {any optimizer} e.g. tf.train.AdamOptimizer
1f args.lookahead:
optimizer = Lookahead(optimizer, la steps=args.la steps,

la alpha=args.la alpha)

Code: https://github.com/michaelrzhang/lookahead



https://github.com/michaelrzhang/lookahead

Contact: michael@cs.toronto.edu

Thank you!
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Interaction with SWA

SWA WideResNet-28-10 CIFAR-100 Test Accuracy
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